Question Number	Answer	Mark
1 (a)	molecule R - ATP / adenosine triphosphate ;	(2)
	molecule S - ADP / adenosine diphosphate ;	

Question Number	Answer	Mark
1 (b)(i)	1. carbon dioxide / CO ₂ ;	
	2. idea that the C has been removed from C_6 or C_5 ;	(2)

Question Number	Answer	Mark
1(b) (ii)	1. cycle would stop / eq ;	
	2. 4 carbon compound would accumulate / eq ;	
	 6 carbon compound would {run short / not be synthesised} / 5 carbon compound would run short / eq ; 	
	4. idea that {molecule T / H} reduce ;	(3)

Question Number	Answer	Mark
1 (c)	 idea of electrons being {passed along / eq} the electron transport chain ; 	
	idea of {losing / eq} energy ;	
	3. (used to) add a phosphate to ADP to make ATP / eq ;	
	4. reference to ATPase ;	
	5. idea of chemiosmosis ;	
	6. idea of oxygen as the final acceptor ;	(3)

Question Number	Answer	Mark
2 (a)	glycolysis ;	(1)

Question Number	Answer	Mark
2(b)(i)	B ;	(1)

Question Number	Answer	Mark
2(b)(ii)	C ;	(1)

Question	Answer	Mark
Number		
2(c)(i)	 oxygen {to oxidise hydrogen / as hydrogen acceptor / as final acceptor of electron transport chain} / eq ; 	
	 reference to reduced {coenzyme / NAD / FAD / eq}; 	
	 (reduced coenzyme) from {glycolysis / Krebs Cycle / eq}; 	
	 comparison of two {oxygen uptake / respiration rates} from pyruvate, molecules B and C e.g. respiration rate faster in pyruvate than molecule B ; 	
	 reference to uptake of substrate compared e.g. uptake of molecule B faster than molecule C ; 	
	 6. comparison of diffusion rate / molecular size / eq ; 	
	 comment on oxidation level of substrate e.g. ratio H:O in molecule /eq ; 	
	 relative quantity of {reduced coenzyme / eq} produced / eq ; 	may
	 pH effect of pyruvate more favourable for {enzyme / reaction} / eq ; 	(4)
	10. number of carbon atoms of {C lower than B} / eq ;	

Question Number	Answer	Mark
2(c)(ii)	 1. lactate can be converted to {pyruvate / eq} ; 2. increases oxygen requirement / reference to 	
	oxygen debt 7 eq ;	
	 idea of most potential for oxidation / e.g. can make the most {reduced coenzyme / eq} ; 	max (2)

Question Number	Answer	Additional Guidance	Mark
3(a)(i)	Two from:		
	1. idea of size of cube ;	1 ACCEPT surface area / volume IGNORE mass	
	2. same {species / eq} of carrot ;		
	 same {age / source / eq} of carrot ; 		(2)

Question Number	Answer	Additional Guidance	Mark
3(a)(ii)	 (oxygen is) electron acceptor / eq ; (also oxygen) binds with protons / H⁺ /hydrogens ; Idea of electrons from {electron transport chain / ETC} ; to form (metabolic) water ; 	3 ACCEPT from cytochromes	
			(3)

Number Image: Second	ſĸ
Number 3(b) 1. aerobic respiration ;	
3(b) 1. aerobic respiration ;	
2. ref. to decarboxylation ;	
3. (when) pyruvate broken down / eq ;	
4. (decarboxylation occurs) in Krebs cycle ; 4 ACCEPT link reaction	
5. details of where in Krebs cycle e.g. removed from { C6 / C5 / eq} 5 ACCEPT C3 to C2 if refer to link reaction	1)

Question Number	Answer	Additional Guidance	Mark
3(c)	 as temperature increases, percentage of CO₂ in bag {increases / eq}; 	1 ACCEPT rises IGNORE change unqualified	
	 (as temperature increase) {reactants /named / eq} {gain more kinetic energy / collide more often}; 		
	3. increased enzyme activity / more E-S complexes form / eq ;		
	 smaller increase between 5 and 10 because {more active sites occupied / some other factor is limiting / eq}; 	4 ACCEPT e.g. O ₂ concentration could be limiting, high CO ₂ levels inhibit enzymes	(3)

Question Number	Answer	Additional Guidance	Mark
3(d)	anaerobic respiration ;	ACCEPT fermentation but not lactic acid fermentation IGNORE: respiration unqualified	(1)